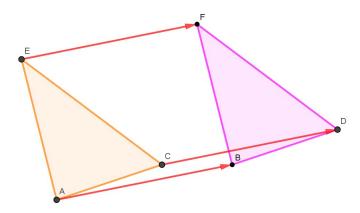
Chapitre 8 : Vecteurs

I. Translation et vecteur

Sur la figure ci-dessous, D et F sont les images respectives des points C et D par la translation qui transforme A en B.

La flèche allant de A vers B indique la direction, le sens et la longueur du déplacement effectué pour aller du point A au point B.



Définition: Soit A et B deux points distincts du plan.

La translation qui transforme A en B est appelée translation de **vecteur** \overrightarrow{AB} .

Propriété: Lorsque A et B sont deux points distincts, **le vecteur** \overrightarrow{AB} est caractérisé par :

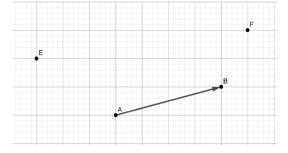
- une direction : celle de la droite (AB)
- un sens : de A vers B
- · une longueur : la longueur AB appelée norme du vecteur \overrightarrow{AB} et notée $\|\overrightarrow{AB}\|$

Histoire:

- le terme « vecteur » est dû au mathématicien irlandais William Rowan Hamilton (1805-1865)
- la notation \overrightarrow{AB} ne sera adopté que vers 1960

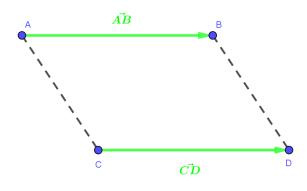
Exercice 1

Construire les points U et V tels que $\overrightarrow{EU} = \overrightarrow{VF} = \overrightarrow{AB}$



II. Vecteurs égaux

Définition: Dire que deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux signifie que le point D est l'image du point C par la **translation** de vecteur \overrightarrow{AB} .

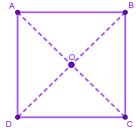


Exercice 2 Dans le carré ABCD de centre O ci-contre, compléter les égalités suivantes :

$$\overrightarrow{AB} =$$

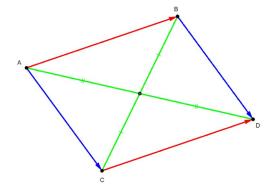
$$\overrightarrow{CB} =$$

$$\overrightarrow{OC} =$$



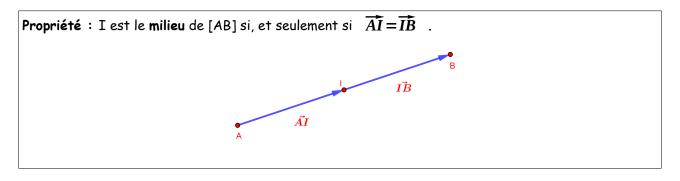
Propriétés : A, B, C et D désignent quatre points du plan.

- $\overrightarrow{AB} = \overrightarrow{CD}$ si, et seulement si, AB \underline{DC} est un parallélogramme.
- $\overrightarrow{AB} = \overrightarrow{CD}$ si, et seulement si, [AD] et [BC] ont le **même milieu**.
- $\overrightarrow{AB} = \overrightarrow{CD}$ si, et seulement si, les vecteurs \overrightarrow{AB} et \overrightarrow{CD} ont même direction, même sens et même longueur.



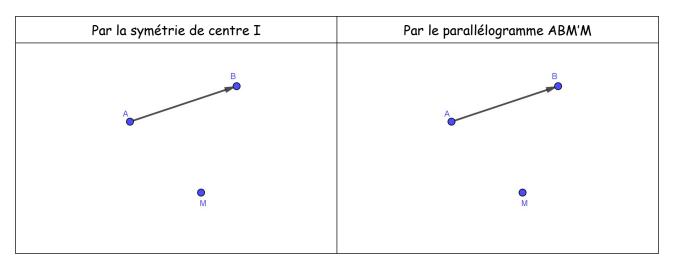
Remarques:

- Attention à l'ordre des points entre les vecteurs égaux et le nom du parallélogramme.
- · Le parallélogramme ABDC peut être aplati.



Méthode - Construire l'image d'un point M par la translation de vecteur \overrightarrow{AB}

- Pour cela on place le point I milieu de [BM] puis on construit l'image du point A par la symétrie ce centre I.
- Le vecteur \overline{AB} est caractérisé par, sa direction (la droite (AB)), son sens (de A vers B) et sa norme (la longueur AB).
- Construire le point M' image du point M par la translation de vecteur \overline{AB} revient à tracer le parallélogramme ABM'M.



Exercice 3:

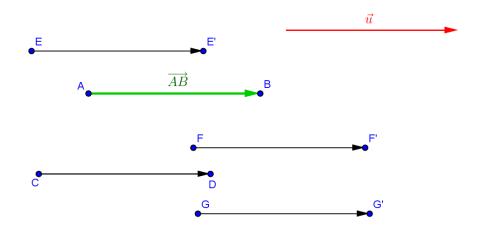
A, B, O et O' sont quatre points distincts. C et D sont les symétriques respectifs de A et B par rapport à O. E et F sont les symétriques respectifs de A et B par rapport à O'.

- 1. Faire une figure
- 2. Démontrer que DCEF est un parallélogramme.

III. Représentants d'un même vecteur et vecteur nul

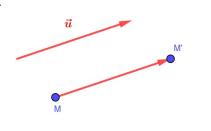
Étant donné deux points A et B, on peut construire une infinité de parallélogrammes dont un côté est le segment [AB]. On obtient ainsi une **infinité** de vecteurs égaux à \overrightarrow{AB} .

Tous ces vecteurs sont donc des **représentants** d'un même vecteur, qu'on note souvent à l'aide d'une lettre, \vec{u} . Ils ont tous même direction, même sens et même longueur.



Définition: Un vecteur non nul \vec{u} est défini par une direction (une droite (d)), un sens (donné par la flèche) et une norme notée $||\vec{u}||$ (sa longueur)

Propriété: L'image du point M par la translation de vecteur \vec{u} est le point M' tel que $\overline{MM}' = \vec{u}$.



Définition: Lorsque les points A et B sont confondus, on appelle translation de vecteur $\overline{A}\overline{A}$ la translation qui transforme le point A en A.

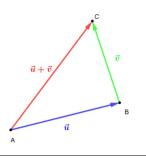
Le vecteur $\overline{A}\overline{A}$ est alors appelé **vecteur nul** et noté $oldsymbol{ ilde{0}}$.

Remarque : le vecteur nul n'a pas de direction, n'a pas de sens et sa norme est égale à 0.

IV. Somme de vecteurs

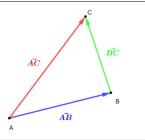
1. Somme de deux vecteurs

Définition: Soit \vec{u} et \vec{v} deux vecteurs du plan. En enchaînant la translation de vecteur \vec{u} puis celle de vecteur \vec{v} , on obtient un nouvelle translation dont le vecteur est associé est noté $\vec{u} + \vec{v}$



2. Relation de Chasles

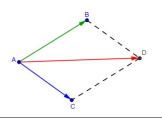
Propriété: Pour tous les points A, B et C du plan on a $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$



3. Règle du parallélogramme

Propriété : Pour tous les points A, B, C et D du plan on a :

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$$
 \Leftrightarrow ABDC est un parallélogramme



Remarque : la relation de Chasles et la règle du parallélogramme permettent de construire un représentant d'origine A de la somme de deux vecteurs.

4. Additions de vecteurs

Additions de vecteurs		
$\vec{u} + \vec{v} = \vec{v} + \vec{u}$	$\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$	ũ+ Ō= ũ

5. Vecteur opposé et différence de deux vecteurs

D'après la relation de Chasles, on a $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$.

Définition: A et B désignent deux points du plan.

Le vecteur \overline{BA} est appelé vecteur opposé du vecteur \overline{AB} et noté $-\overline{AB}$.

Les vecteurs \overrightarrow{AB} et $-\overrightarrow{AB}$ ont même direction, même norme mais sont de sens contraires.



Définitions : \vec{u} et \vec{v} désignent deux vecteurs.

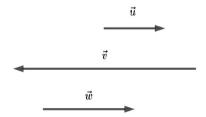
- · L'opposé du vecteur \vec{u} est le vecteur noté $-\vec{u}$ tel que $\vec{u} + (-\vec{u}) = \vec{0}$
- La différence des vecteurs \vec{u} et \vec{v} notée $\vec{u} \vec{v}$ est le vecteur $\vec{u} + (-\vec{v})$

IV. Produit d'un vecteur par un réel

Définition: Au vecteur \vec{u} et au réel k, on peut associer un vecteur, noté $k\vec{u}$ appelé produit du vecteur \vec{u} par le réel k, défini de la façon suivante :

- si u≠Oetk≠0
 - \circ $k\vec{u}$ et \vec{u} ont même direction
 - \circ $k\vec{u}$ et \vec{u} ont même sens si k \circ 0 et sont de sens contraires si k \circ 0
 - $||k\vec{u}|| = |k| \times ||u||$
- si $\vec{u} = \vec{O}ouk = 0$ alors $k\vec{u} = \vec{0}$

Exercice 4 : Compléter $\vec{v} = \vec{u}$ et $\vec{w} = \vec{u}$

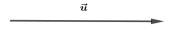


Règles de calculs : k et k' désignent deux nombres réels , \vec{u} et \vec{v} désignent deux vecteurs. On a :

- $\circ \qquad k\vec{\mathbf{u}} = \vec{\mathbf{O}} \Leftrightarrow (k=0) ou(\vec{\mathbf{u}} = \vec{\mathbf{O}})$
- $\circ \qquad k(\vec{\mathbf{u}} + \vec{\mathbf{v}}) = k\vec{\mathbf{u}} + k\vec{\mathbf{v}}$
- $\circ \qquad \mathbf{k}(\mathbf{k}'\vec{\mathbf{u}}) = (\mathbf{k}\mathbf{k}')\vec{\mathbf{u}}$
- $\circ \qquad (k+k')\vec{\mathbf{u}} = k\vec{\mathbf{u}} + k'\vec{\mathbf{u}}$
- $0 1\vec{u} = \vec{u}$
- $-1\vec{u} = -\vec{u}$

Exercice 5

Construire les vecteurs d'origine C égaux à $0.5\vec{u}$ et $-2\vec{u}$



C

Exercice 6

Construire un triangle RST et placer les points U et V tels que $\overrightarrow{RU} = 2\overrightarrow{SR}$ et $\overrightarrow{VT} = \frac{3}{4}\overrightarrow{TS}$

V. Géométrie repérée

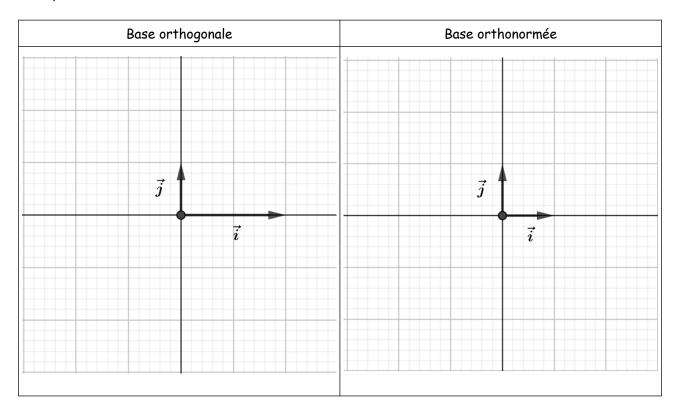
1. Base (\vec{i}, \vec{j}) du plan

Définition: Une base de vecteurs du plan est un couple de deux vecteurs non nu $\overline{(\vec{i},\vec{j})}$ n'ayant pas la même direction.

Définition : Deux vecteurs (\vec{i},\vec{j}) sont dits **orthogonaux** lorsque leurs **directions sont** perpendiculaires.

- Une base est dite orthogonale si les vecteurs $(\vec{i}\ ,\vec{j}\)$ sont orthogonaux.
- Une base est dite orthonormée si la base $(\vec{i}\,,\vec{j}\,)$ est orthogonale et $\|\vec{i}\,\| = \|\vec{j}\| = 1$.

Exemple:



<u>Seconde</u> Vecteurs-cours

Remarque : soit ABCD un carré de côté 1 alors la base $(\overrightarrow{AB}, \overrightarrow{AD})$ est une base orthonormée.

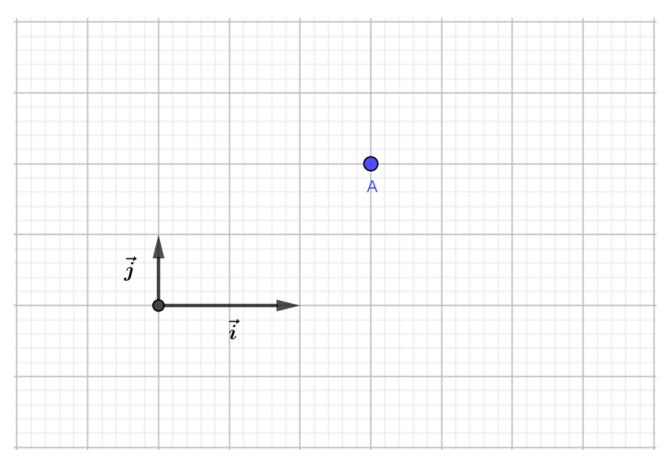
2. Coordonnées d'un vecteur dans une base du plan

Théorème et définition : Soit (\vec{i},\vec{j}) une base du plan et \vec{u} un vecteur du plan. Il existe un unique couple (x;y) de réels tel que $\vec{u} = x \vec{i} + y \vec{j}$. On note $\vec{u}(x;y)$ ou $\vec{u}\begin{pmatrix} x \\ y \end{pmatrix}$

Remarque : le vecteur nul a pour coordonnées (0;0).

Exercice 7

Dans la base $(\vec{i}\,,\vec{j}\,)$, construire les vecteurs $\vec{u}(2;3); \vec{v}(-1;-1); \vec{w}(-4;1)$ et $\vec{x}(-5;-2)$ d'origine A.



Compléter les égalités suivantes :

$$\vec{u} = \dots \vec{i} + \dots \vec{j}$$
 $\vec{v} = \dots \vec{i} + \dots \vec{j}$ $\vec{w} = \dots \vec{i} + \dots \vec{j}$ $\vec{x} = \dots \vec{i} + \dots \vec{j}$

$$\vec{v} = \dots \vec{i} + \dots \vec{j}$$

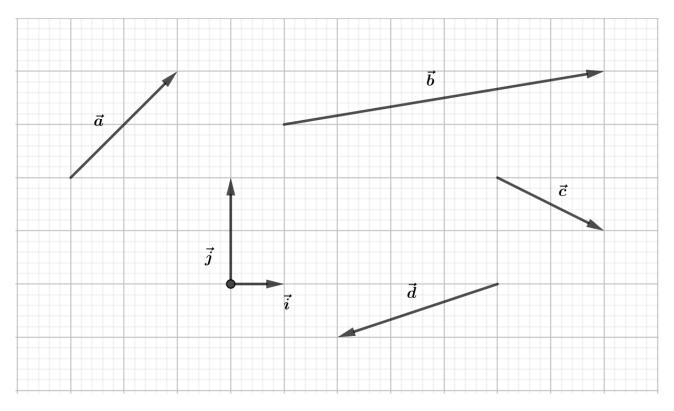
$$\vec{w} = \dots \vec{i} + \dots \vec{j}$$

$$\vec{x} = \dots \vec{i} + \dots \vec{j}$$

<u>Seconde</u> Vecteurs-cours

Exercice 8

Déterminer les coordonnées des vecteurs \vec{a} ; \vec{b} ; \vec{c} et \vec{d} dans la base $(\vec{i}$, $\vec{j})$.



Compléter les égalités suivantes :

$$\vec{a} = \dots \vec{i} + \dots \vec{i}$$

$$\vec{b} = \dots \vec{i} + \dots \vec{i}$$

$$\vec{a} = \dots \vec{i} + \dots \vec{j}$$
 $\vec{b} = \dots \vec{i} + \dots \vec{j}$ $\vec{c} = \dots \vec{i} + \dots \vec{j}$ $\vec{d} = \dots \vec{i} + \dots \vec{j}$

$$\vec{d} = \dots \vec{i} + \dots \vec{j}$$

Propriété : deux vecteurs $\vec{u}(x;y)$ et $\vec{v}(x';y')$ sont égaux si, et seulement si, x = x' et y = y'

Remarque : cette propriété est équivalente à dire que deux vecteurs sont égaux si et seulement si ils ont mêmes coordonnées.

3. Coordonnées d'un vecteur dans un repère du plan

Définition : Un repère du plan est la donnée d'un point O du plan et d'une base (\vec{i},\vec{j}) . O est appelé origine du repère $\ (O; \vec{i}\;, \vec{j})$.

Théorème et définition : Soit $(O;\vec{i},\vec{j})$ un repère du plan et A un point du plan. Il existe un unique couple $(x_A;y_A)$ de réels tel que $\overrightarrow{OA} = x_A \vec{i} + y_A \vec{j}$. x_A et y_A sont appelés les coordonnées de A dans le repère $(O;\vec{i},\vec{j})$. x_A est l'abscisse de A et y_A est l'ordonnée de A. On écrit $A(x_A;y_A)$.

Remarques:

- · les coordonnées de A dans le repère $(O;\vec{i},\vec{j})$ sont les coordonnées du vecteur \overrightarrow{OA} dans la base (\vec{i},\vec{j}) .
- dans la base (\vec{i}, \vec{j}) , \vec{i} a pour coordonnées (1;0) et \vec{j} a pour coordonnées (0;1).
- Le vecteur nul $\vec{0}$ a pour coordonnées (0 ; 0)

Propriété: Soit $A(x_A; y_A) et B(x_B; y_B)$ deux points du plan dans un repère $(O; \vec{i}, \vec{j})$. Les coordonnées du vecteur \overrightarrow{AB} sont $(x_B - x_A; y_B - y_A)$. On note $\overrightarrow{AB}(x_B - x_A; y_B - y_A)$.

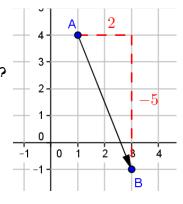
Démonstration :

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_B \vec{i} + y_B \vec{j}) - (x_A \vec{i} + y_A \vec{j}) = (x_B - x_A) \vec{i} + (y_B - y_A) \vec{j}$$
 #

Exercice 9

Dans un repère du plan, on considère les points A(1; 4) et B(3; -1).

- 1. Par lecture graphique, déterminer les coordonnées du vecteur \overrightarrow{AB} ?
- 2. Retrouver votre résultat par le calcul.



Méthode - Déterminer les coordonnées d'un point à l'aide d'une égalité vectorielle

Dans le plan, on considère le point A(1;-2) et le vecteur $\vec{u}(3;-2)$. On cherche à déterminer les coordonnées de M telles que $\overrightarrow{AM} = \vec{u}$ On note M(x;y). On a alors $\overrightarrow{AM}(x-1;y+2)$. $\overrightarrow{AM} = \vec{u} \Leftrightarrow \begin{cases} x-1=3 \\ y+2=-2 \end{cases} \Leftrightarrow \begin{cases} x=4 \\ y=-4 \end{cases} \Leftrightarrow M(4;-4)$

Exercice 10

On considère le point B(-2;3) et le vecteur $\vec{u}(5;-1)$. Déterminer les coordonnées du point C tel que $\vec{u} = \overrightarrow{BC}$.

4. Coordonnées de $\vec{u} + \vec{v}$ et de $k\vec{u}$

Propriété: Dans le plan muni d'un repère, on considère les vecteurs $\vec{u}(x;y)$ et $\vec{v}(x';y')$ alors le vecteur $\vec{u}+\vec{v}$ a pour coordonnées (x+x';y+y')

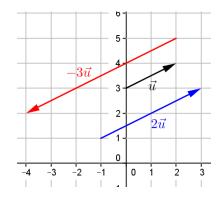
Exercice 11

On considère $\overline{AB}(-3;5)$ et $\overline{BC}(1;-3)$. Déterminer les coordonnées de \overline{AC} .

Propriété: Dans le plan muni d'un repère, on considère le vecteur $\vec{u}(x;y)$ et le réel k. Le vecteur $k\vec{u}$ a pour coordonnées (kx;ky).

Exercice 12

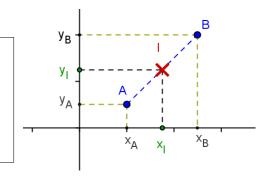
A partir de la figure ci-contre, déterminer les coordonnées des vecteurs $-3\vec{u}$ et $2\vec{u}$



5. Coordonnées du milieu d'un segment

Propriété: Le milieu I du segment [AB] a pour coordonnées

$$\begin{cases} x_{I} = \frac{X_{A} + X_{B}}{2} \\ y_{I} = \frac{y_{A} + y_{B}}{2} \end{cases}$$



Démonstration :

I milieu de [A] si et seulement si $\overrightarrow{AI} = \overrightarrow{IB}$.

$$\overrightarrow{AI} = \overrightarrow{IB} \Leftrightarrow \begin{cases} x_I - x_A = x_B - x_I \\ y_I - y_A = y_B - y_I \end{cases} \Leftrightarrow \begin{cases} 2x_I = x_B + x_A \\ 2y_I = y_B + y_A \end{cases} \Leftrightarrow \begin{cases} x_I = \frac{x_A + x_B}{2} \\ y_I = \frac{y_A + y_B}{2} \end{cases}$$
#

Remarques:

- · Les coordonnées du milieu sont donc les moyennes des abscisses et des ordonnées des deux points.
- · Ces formules sont valables dans tous les repères du plan.

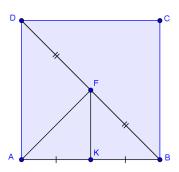
Exercice 13

Par le calcul, déterminer les coordonnées de M milieu des ponts A(-2 ; 2) et B(6 ; 4).

Exercice 14

Le quadrilatère ABCD est un carré.

- 1. Quel est la nature du repère (A; B, D)? Justifier.
- 2. Dans le repère (A; B,D), déterminer les coordonnées de tous les points de la figure.

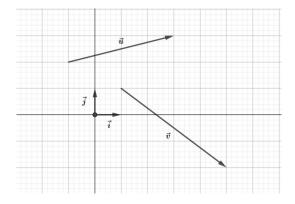


6. Norme d'un vecteur dans une base orthonormée

Propriété : Soit $\vec{u}(x;y)$ un vecteur dans une base orthonormée (\vec{i},\vec{j}) . On a $\|\vec{u}\| = \sqrt{x^2 + y^2}$.

Exercice 15

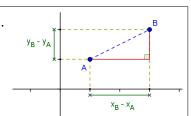
Dans la base (\vec{i}, \vec{j}) ci-contre, lire les coordonnées des vecteurs \vec{u} et \vec{v} puis calculer leur norme.



7. Distance entre deux points dans un repère orthonormé

Propriété: Le plan est rapporté à un un repère **orthonormé** $(O;\vec{i},\vec{j})$.

Si alors $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$.



- · AB désigne la distance entre les deux points A et B
- · AB désigne aussi la longueur du segment [AB]

Attention : cette formule est fausse dans un repère non orthonormé!

Exercice 16

Dans un repère orthonormé, déterminer la valeur exacte de la longueur du segment [AB] lorsque A(1; 2) et B(3; 5) puis donner une valeur approchée par défaut à 0,1 près.

VI. Colinéarité de deux vecteurs

1. Vecteurs colinéaires

Définition: deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires s'il existe un nombre non nul k tel que

$$\vec{v} = k\vec{u}$$

Remarques:

 deux vecteurs colinéaires sont donc deux vecteurs qui ont la même direction mais pas nécessairement le même sens ni la même intensité.

• Par convention le vecteur nul est colinéaire à tous les autres vecteurs.

Définition: Soit $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs dans une base (\vec{i},\vec{j}) . On appelle **déterminant** des vecteurs $\vec{u}(x;y)$ et $\vec{v}(x';y')$, le nombre défini par :

$$\det(\vec{u}, \vec{v})$$
 ou $\begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = x \times y' - x' \times y$

Propriété: Soit $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs dans une base (\vec{i},\vec{j}) .

- $\vec{u}(x;y)$ et $\vec{v}(x';y')$ sont colinéaires si et seulement si $\det(\vec{u},\vec{v})=0$
- $\vec{u}(x;y)$ et $\vec{v}(x';y')$ sont colinéaires si et seulement si $x \times y' x' \times y = 0$

Démonstration exigible au programme

- On suppose \vec{u} et \vec{v} colinéaires.
 - o 1er cas: \vec{u} et \vec{v} sont tous les deux non nuls. Il existe un réel $k \neq 0$ tel que $\vec{v} = k\vec{u}$ donc $x' = k \times x$ et $y' = k \times y$. On déduit que $x \times y' x' \times y = x \times (ky) (kx) \times y = k(xy xy) = 0$

- 2ème cas: $\vec{u} = \vec{0}$ alors x = 0 et y = 0 donc $xy' x'y = 0 \times y' 0 \times x' = 0$ 3ème cas: $\vec{v} = \vec{0}$ alors x' = 0 et y' = 0 donc $xy' - x'y = x \times 0 - 0 \times y = 0$
- Réciproquement, supposons $x \times y' x' \times y = 0$ alors :
 - of 1er cas: \vec{u} et \vec{v} sont tous les deux non nuls. Comme \vec{u} est non nul alors l'une de ses coordonnées est non nulle, par exemple x. Posons $k = \frac{x'}{x}$ alors x' = kx donc $x \times y' kx \times y = 0$ donc $x \times y' x' \times y = 0$ donc y' ky = 0 car $x \neq 0$ donc y' = ky. On déduit que x' = kx et y' = ky donc $\vec{v} = k\vec{u}$.
 - 2ème cas : l'un des deux vecteurs est nul Or le vecteur nul est colinéaire à tout vecteur donc \vec{u} et \vec{v} sont colinéaires. #

Exercice 17

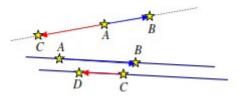
Dire si dans chacun des cas suivants, les vecteurs \vec{u} et \vec{v} sont colinéaires ou pas

$$\vec{u}(5;3)$$
 et $\vec{v}(35;14)$ $\vec{u}(16;3)$ et $\vec{v}(49;10)$ $\vec{u}(20;6)$ et $\vec{v}(30;9)$

2. Droites parallèles et points alignés

Propriétés :

- Les points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
- Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overline{AB} et \overline{CD} sont colinéaires.



Méthode - Montrer que trois points sont alignés

On considère les points A(1; 2), B(-2; 0) et C(7; 6).

$$\overrightarrow{AB}(-2-1;0-2)$$
 donc $\overrightarrow{AB}(-3;-2)$ et $\overrightarrow{AC}(7-1;6-2)$ donc $\overrightarrow{AC}(6;4)$

On constate que $\overline{AC} = -2\overline{AB}$ donc \overline{AB} et \overline{AC} sont colinéaires donc les points A, B et C sont alignés.

Exercice 18

Dans un repère, on donne les points
$$A(\frac{-7}{2};\frac{-1}{2})$$
, $B(\frac{1}{2};\frac{3}{2})$ et $C(\frac{5}{2};\frac{5}{2})$.

Démontrer que les points A, B et C sont alignés.

2. Vecteur et milieu d'un segment

Propriété : I est le milieu de [AB] si, et seulement si, une des égalités suivantes est vraie :

$$\overrightarrow{AI} = \overrightarrow{IB}$$

$$\overrightarrow{AI} = \frac{1}{2} \overrightarrow{AB}$$

$$\vec{IA} + \vec{IB} = \vec{0}$$